Duality for pathwise superhedging in continuous time

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathwise uniqueness and continuous dependence for SDEs with nonregular drift

A new proof of a pathwise uniqueness result of Krylov and Röckner is given. It concerns SDEs with drift having only certain integrability properties. In spite of the poor regularity of the drift, pathwise continuous dependence on initial conditions may be obtained, by means of this new proof. The proof is formulated in such a way to show that the only major tool is a good regularity theory for ...

متن کامل

Pathwise continuous time spectrum degeneracy at a single point and weak predictability

The paper studies properties of continuous time processes in pathwise deterministic setting with spectrum degeneracy at a single point where their Fourier transforms vanish. It appears that these processes are predictable is some weak sense, meaning that convolution integrals over future time can be approximated by integrals over past time. In particular, this means that the processes with this...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Continuous time portfolio optimization

This paper presents dynamic portfolio model based on the Merton's optimal investment-consumption model, which combines dynamic synthetic put option using risk-free and risky assets. This paper is extended version of methodological paper published by Yuan Yao (2012). Because of the long history of the development of foreign financial market, with a variety of financial derivatives, the study on ...

متن کامل

Pathwise Coordinate Optimization for Sparse

The pathwise coordinate optimization is one of the most important computational frameworks for high dimensional convex and nonconvex sparse learning problems. It differs from the classical coordinate optimization algorithms in three salient features: warm start initialization, active set updating, and strong rule for coordinate preselection. Such a complex algorithmic structure grants superior ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finance and Stochastics

سال: 2019

ISSN: 0949-2984,1432-1122

DOI: 10.1007/s00780-019-00395-2